

Transformation Strategy for Chemnitz

towards a sustainable, affordable and resilient DH system

Susanne Ochse, Dipl.-Ing. (FH) GEF Ingenieur AG

Heat Roadmap Poland Warsaw, 25.01.2018

GEF Ingenieur AG

Ferdinand-Porsche-Straße 4a D-69181 Leimen info@gef.de

www.gef.de

GEF Ingenieur AG

office in Leimen near Heidelberg founded in 1984

office in Chemnitz founded in 1990

Leading B2B Consultant for Planning District Heating in Germany

- more than 30 years experience with all aspects of planning district heating systems
- staff of 50 highly qualified specialists
- development of economic solutions with focus on the interest of our customers
- independent of construction and manufacturing companies

GEF Ingenieur AG: one-stop planning of DH/DC systems

ervice portfolio

Õ

range of services

- research and development
- strategic business development
- heat density mapping
- technical and economic feasibility studies
- planning services for all phases of the design process (basic, permit, detailed design)
- construction surveillance, quality control

- DH/DC generation and conversion plant
- DH/DC pipeline systems
- substations
- thermal storage
- hydraulic grid analysis
- pipe stress analysis (software sisKMR)

Transformation Strategy for Chemnitz DH system

The Point of Departure

The City of Chemnitz The Energy Company: eins - energie in sachsen The DH System of Chemnitz The Task The Team

The Transformation Strategy

The Project Phases Development of Heating Demand Generation Options Grid Development Options Proposed Joint Option

Summary

The City of Chemnitz

- 3rd largest city in Sachsen
- 243.000 inhabitants (1980: 315.000)
- envia, eins, VW, Siemens, Voith
- Technical University (> 10.000 students)
- City Council: majority for SPD / Left / Green coalition

Heating Market in Chemnitz

- market share of DH and gas > 90%
- gas and DH distribution grid often located in the same streets

Buildings in Chemnitz

- most inhabited buildings have been renovated to good energy-efficiency standards
- some vacancy, especially of old unrenovated buildings

The Energy Company eins energie in sachsen

Key Data eins energie in sachsen GmbH & Co. KG

- regional utility in Sachsen, headquarters in Chemnitz
- 982 Mio. Euro turnover (2016)
- 400.000 customers, 650 employees
- shareholders: 39,9 % Thüga
 - 25,5 % City of Chemnitz 25,5 % ZV Gasversorgung Südsachsen 9,1 % envia Mitteldeutsche Energie AG

Infrastructure

•	gas grid	7.300 km
•	electricity grid	3.000 km
•	water grid	1.500 km
•	fibre-optic network	1.000 km
•	district heating grid	300 km
•	district cooling grid	5 km

The DH System of Chemnitz

District Heating System

 primary system with high number of secondary systems, partially dating from the 1960s.

supply temp. pri: 95 - 125 °C sec:70 - 85 °C return temp.: 55 - 60 °C

- heat fed into DH grid (2014)
 885 GWh
 55 % from 1990
- DH pipe sizes too large for current heat load
- distribution heat loss: 20%

The District Heating System of Chemnitz

Site North (HKW Nord)
 2 large lignite based CHP units (165 MW_{th}, 130 MW_{th})

Site Altchemnitz
 2 gas boilers (2x 86 MW_{th})
 3 new gas boilers under construction (3x 33 MW_{th})

 LowEx district heating in the Brühl (inner city district) low grid temperatures 75/45 °C large solar thermal system (solar fraction ~10 % Brühl demand) integration of heat storage

The Task: Transformation Strategy

Main Questions

- how to replace the lignite CHP units
- how to reduce the CO₂-emissions of the DH system and increase the share of renewables
- which strategy for DH grid development (repair, replace, dismantle, ... which temperatures, which sites for future generation plant)

While maintaining/improving economic viability reliability of supply ecological footprint

Task

- design the future DH system (generation + distribution) that will be in operation after 2030
- devise a strategy to transform the current system into the future system
- Timeline of project: March 2016 to June 2017

Transformation Strategy for the Chemnitz DH System

Generation Trading Sales New Business Fields Communications Controlling Documentation TU Chemnitz

inetz

Ein Unternehmen von eins

DH/DC Grid Gas Grid

GEF Ingenieur AG

Political Situation Heat Densitiy Mapping Analysis of Heating Market Hydraulics of DH/Gas Grid Technical / Economic Analysis of Grid Development

Transformation Strategy Implementation Plan

Austrian Institute of Technology

Modelling of Electr. Market (TU Vienna) Technical / Econonmic Analysis of future Generation Plant

Transformation Strategy Implementation Plan

Transformation Strategy for Chemnitz DH system

The Point of Departure

The City of Chemnitz The Energy Company: eins - energie in sachsen The DH System of Chemnitz The Task The Team

The Transformation Strategy

The Project Phases Development of Heating Demand Generation Options Grid Development Options Proposed Joint Option

Summary

The Project Phases

The Project Phases

Development of Heating Demand

1. Step: Database of Buildings

- database of buildings: location, size, type, use, heating demand, etc.
- input from the the city administration and large housing companies
 - no plans/expectations for intensive investment in further increase of energy-efficiency of existing buildings in the foreseeable future

2. Step: Defining Scenarios

- analysis of influencing factors
- definition of different scenarios for population development, levels of renovation, etc.

3. Step: Heat Density Mapping

- heat density mapping for currrent heating demand and scenario(s) for future demand
- analysis of longterm viability of DH using heat density maps (prepared with the tool ArcGIS)

Assumption for Phase II

Overall DH demand in Chemnitz will remain almost constant until 2040 (reduction < 10 %)

The Project Phases

Comparing Generation Options

1. Step: Regional Potential of Renewables

 several options ruled out for lack of potential, other options included in the next stage (wood chips, waste incineration, solar thermal, etc.)

2. Step: Optimization

- optimization (Tool VarOpt) determines the cost optimal combination of type, size and operation for generation plant
- annuity method, heat demand(s) as hourly load curves for one year
- investment cost, operation cost, commodity prices, technical parameters included in the optimization model for the different types of generation plant
- aim: identify an option that is economically viable, has an acceptable ecological footprint, is resilient to varying scenarios (heat demand, prices), is technically possible to realise with the DH grid
- number of options reduced after rough optimization
- detailed optimization for 2-3 options using hourly price curves for electricity and including use of heat storage

3. Step: SWOT Analysis

- 4. Step: Selection of the Preferred Option for the Future Generation Portfolio
- 5. Step: Compatibility Check with Grid Option

Proposed Option for Heat Generation

Renewable Baseload(e.g. CHP using wood chips)Gas CHP Engines(units of 10 MW, total > 100 MW,
possibly more units later)Gas Boilers(60-80 MW)

waste incineration, bio-gas and solar thermal energy could be useful additions

Advantages

modular build + phased implementation \rightarrow best ability to react on changing political and technological developments

- highly efficient technologies for the new generation plant
- renewable share of district heating is going to increase
- significant reduction of CO₂-emissions
- smaller generation units mean less capacity is needed to ensure security of supply (n-1)
- compatible with preferred grid option

High reliability of supply and reduction of CO₂-emissions at competitive prices in a long term

The Project Phases

Comparing Grid Options

1. Step: Definition of future operation temperatures

 current primary grid: supply 95 – 125 °C future primary grid: supply 80 – 105 °C

2. Step: Hydraulic Simulation

- simulation tool STANET
- four options simulation of future grids options assumption: pipelines will have been replaced by pipes with optimal size

3. Step: Analysis

 comparison of grid options with regard to cost of grid replacement, reliability of supply, operation cost, electricity consumption for pumping, cost of preparing additional generation sites, etc.

4. Step: Selection of the Preferred Grid Option

Site Altchemnitz

CHP

Boilers

Heat Generator

leat Store

5. Step: Compatibility Check with Generation Option

Proposed Option for District Heating Grid

3 generation sites – all with CHP

Decommissioning of section C pipe

Closing a mesh to improve hydraulics and security of supply

Reduction of operation temperatures

Replacement of DH grid over the next decades with smaller pipe sizes

Advantages

- lower grid replacement costs and lower heat losses
- improved security of supply, flexibility
- better use of heat accumulators

Summary

- Resilient solutions for the transformation of DH systems are very individual. The Chemnitz strategy is not a blue print for the transformation of Polish or other German DH systems.
- But the method of devising a transformation strategy by using an approach that looks at both, the generation and the grid structure, is tried and tested.
- Energy policy is volatile in Germany, causing a difficult environment for long-term investment.
- Transforming the infrastructure (building stock, power grids, gas grids, DH grids) is costintensive and poses risks of stranded investment.
- District heating grids offer enormous possibilities regarding
 - primary energy efficiency, CO₂-reduction potential
 - integration of different types of heat generation and storage (improvement of sector coupling, integration of fluctuating renewable energy)
 - leverage to reach a high number of stakeholders efficiently